Cremona's table of elliptic curves

Curve 18330bb1

18330 = 2 · 3 · 5 · 13 · 47



Data for elliptic curve 18330bb1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13- 47- Signs for the Atkin-Lehner involutions
Class 18330bb Isogeny class
Conductor 18330 Conductor
∏ cp 672 Product of Tamagawa factors cp
deg 193536 Modular degree for the optimal curve
Δ -26341939976601600 = -1 · 224 · 37 · 52 · 13 · 472 Discriminant
Eigenvalues 2- 3- 5+  0 -4 13- -4  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-320261,70168641] [a1,a2,a3,a4,a6]
Generators [-14:8647:1] Generators of the group modulo torsion
j -3632753777288703591889/26341939976601600 j-invariant
L 8.3611930260594 L(r)(E,1)/r!
Ω 0.37800419409986 Real period
R 0.131662576459 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 54990p1 91650a1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations