Cremona's table of elliptic curves

Curve 18330bd1

18330 = 2 · 3 · 5 · 13 · 47



Data for elliptic curve 18330bd1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 13- 47- Signs for the Atkin-Lehner involutions
Class 18330bd Isogeny class
Conductor 18330 Conductor
∏ cp 300 Product of Tamagawa factors cp
deg 86400 Modular degree for the optimal curve
Δ -169621494120000 = -1 · 26 · 35 · 54 · 135 · 47 Discriminant
Eigenvalues 2- 3- 5+ -3  5 13-  2 -6 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-10016,-736704] [a1,a2,a3,a4,a6]
Generators [226:-3038:1] Generators of the group modulo torsion
j -111124384814596609/169621494120000 j-invariant
L 8.3687058626058 L(r)(E,1)/r!
Ω 0.22638381218539 Real period
R 0.12322297225847 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 54990r1 91650c1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations