Cremona's table of elliptic curves

Curve 19040h1

19040 = 25 · 5 · 7 · 17



Data for elliptic curve 19040h1

Field Data Notes
Atkin-Lehner 2- 5+ 7+ 17+ Signs for the Atkin-Lehner involutions
Class 19040h Isogeny class
Conductor 19040 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 3072 Modular degree for the optimal curve
Δ 22657600 = 26 · 52 · 72 · 172 Discriminant
Eigenvalues 2-  0 5+ 7+ -4 -2 17+  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-73,72] [a1,a2,a3,a4,a6]
Generators [-8:12:1] [-1:12:1] Generators of the group modulo torsion
j 672221376/354025 j-invariant
L 6.5470622107917 L(r)(E,1)/r!
Ω 1.8792201609392 Real period
R 3.4839250593822 Regulator
r 2 Rank of the group of rational points
S 0.9999999999999 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 19040k1 38080bl2 95200j1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations