Cremona's table of elliptic curves

Curve 19152z1

19152 = 24 · 32 · 7 · 19



Data for elliptic curve 19152z1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 19- Signs for the Atkin-Lehner involutions
Class 19152z Isogeny class
Conductor 19152 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 6144 Modular degree for the optimal curve
Δ 521240832 = 28 · 37 · 72 · 19 Discriminant
Eigenvalues 2+ 3-  0 7-  6  4  0 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-255,1118] [a1,a2,a3,a4,a6]
j 9826000/2793 j-invariant
L 3.069307208094 L(r)(E,1)/r!
Ω 1.534653604047 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 9576t1 76608ev1 6384e1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations