Cremona's table of elliptic curves

Curve 1938j1

1938 = 2 · 3 · 17 · 19



Data for elliptic curve 1938j1

Field Data Notes
Atkin-Lehner 2- 3- 17- 19+ Signs for the Atkin-Lehner involutions
Class 1938j Isogeny class
Conductor 1938 Conductor
∏ cp 250 Product of Tamagawa factors cp
deg 22800 Modular degree for the optimal curve
Δ -2423324873327616 = -1 · 210 · 35 · 175 · 193 Discriminant
Eigenvalues 2- 3-  1  3  2  4 17- 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,0,-692950,221979428] [a1,a2,a3,a4,a6]
j -36798443442923099464801/2423324873327616 j-invariant
L 4.3548145184342 L(r)(E,1)/r!
Ω 0.43548145184342 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 5 Number of elements in the torsion subgroup
Twists 15504q1 62016m1 5814d1 48450a1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations