Cremona's table of elliptic curves

Curve 19392w1

19392 = 26 · 3 · 101



Data for elliptic curve 19392w1

Field Data Notes
Atkin-Lehner 2- 3+ 101+ Signs for the Atkin-Lehner involutions
Class 19392w Isogeny class
Conductor 19392 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 25600 Modular degree for the optimal curve
Δ -781706723328 = -1 · 217 · 310 · 101 Discriminant
Eigenvalues 2- 3+  0  3  6 -2 -5  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,1567,34689] [a1,a2,a3,a4,a6]
j 3244468750/5963949 j-invariant
L 2.4652215170325 L(r)(E,1)/r!
Ω 0.61630537925813 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 19392l1 4848c1 58176ce1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations