Cremona's table of elliptic curves

Curve 19536t3

19536 = 24 · 3 · 11 · 37



Data for elliptic curve 19536t3

Field Data Notes
Atkin-Lehner 2- 3+ 11+ 37- Signs for the Atkin-Lehner involutions
Class 19536t Isogeny class
Conductor 19536 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 5548865716027392 = 216 · 3 · 11 · 376 Discriminant
Eigenvalues 2- 3+  0  4 11+ -4 -6 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1080608,432710400] [a1,a2,a3,a4,a6]
Generators [613:518:1] Generators of the group modulo torsion
j 34069730739753390625/1354703543952 j-invariant
L 4.5465301892558 L(r)(E,1)/r!
Ω 0.40158832266533 Real period
R 1.8868950832869 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 2442i3 78144cy3 58608bo3 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations