Cremona's table of elliptic curves

Curve 19635m1

19635 = 3 · 5 · 7 · 11 · 17



Data for elliptic curve 19635m1

Field Data Notes
Atkin-Lehner 3+ 5- 7- 11+ 17- Signs for the Atkin-Lehner involutions
Class 19635m Isogeny class
Conductor 19635 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 28672 Modular degree for the optimal curve
Δ -824683607055 = -1 · 32 · 5 · 78 · 11 · 172 Discriminant
Eigenvalues -1 3+ 5- 7- 11+ -2 17-  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,2180,20252] [a1,a2,a3,a4,a6]
j 1145725929069119/824683607055 j-invariant
L 1.134282164039 L(r)(E,1)/r!
Ω 0.56714108201951 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 58905y1 98175u1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations