Cremona's table of elliptic curves

Curve 19803a4

19803 = 3 · 7 · 23 · 41



Data for elliptic curve 19803a4

Field Data Notes
Atkin-Lehner 3+ 7+ 23- 41- Signs for the Atkin-Lehner involutions
Class 19803a Isogeny class
Conductor 19803 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ 284151405321 = 316 · 7 · 23 · 41 Discriminant
Eigenvalues -1 3+  2 7+  4 -2 -6  4 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-35342,2542466] [a1,a2,a3,a4,a6]
Generators [1670:15781:8] Generators of the group modulo torsion
j 4882000817235743713/284151405321 j-invariant
L 2.9705642867404 L(r)(E,1)/r!
Ω 0.92321815715054 Real period
R 6.4352380068192 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 59409c4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations