Cremona's table of elliptic curves

Curve 20160df1

20160 = 26 · 32 · 5 · 7



Data for elliptic curve 20160df1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7+ Signs for the Atkin-Lehner involutions
Class 20160df Isogeny class
Conductor 20160 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 12288 Modular degree for the optimal curve
Δ 5927040000 = 210 · 33 · 54 · 73 Discriminant
Eigenvalues 2- 3+ 5- 7+  2  2 -2 -8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-1272,-17064] [a1,a2,a3,a4,a6]
Generators [-23:5:1] Generators of the group modulo torsion
j 8232302592/214375 j-invariant
L 5.3980631945292 L(r)(E,1)/r!
Ω 0.80069627454193 Real period
R 1.6854278476621 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20160w1 5040a1 20160ct1 100800jt1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations