Cremona's table of elliptic curves

Curve 20400dd1

20400 = 24 · 3 · 52 · 17



Data for elliptic curve 20400dd1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 17+ Signs for the Atkin-Lehner involutions
Class 20400dd Isogeny class
Conductor 20400 Conductor
∏ cp 68 Product of Tamagawa factors cp
deg 78336 Modular degree for the optimal curve
Δ -238857645484800 = -1 · 28 · 317 · 52 · 172 Discriminant
Eigenvalues 2- 3- 5+ -3  2 -5 17+  7 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-13013,933423] [a1,a2,a3,a4,a6]
Generators [7:918:1] Generators of the group modulo torsion
j -38081092648960/37321507107 j-invariant
L 5.5904500257291 L(r)(E,1)/r!
Ω 0.50701963300392 Real period
R 0.16214855407332 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 5100d1 81600fs1 61200fx1 20400cq1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations