Cremona's table of elliptic curves

Curve 20440h1

20440 = 23 · 5 · 7 · 73



Data for elliptic curve 20440h1

Field Data Notes
Atkin-Lehner 2- 5+ 7- 73+ Signs for the Atkin-Lehner involutions
Class 20440h Isogeny class
Conductor 20440 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 8960 Modular degree for the optimal curve
Δ -327040000 = -1 · 210 · 54 · 7 · 73 Discriminant
Eigenvalues 2-  2 5+ 7- -2  6  2 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,104,-804] [a1,a2,a3,a4,a6]
Generators [178986:739392:12167] Generators of the group modulo torsion
j 120320924/319375 j-invariant
L 7.3319001593081 L(r)(E,1)/r!
Ω 0.88249745518108 Real period
R 8.3081261212291 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 40880c1 102200c1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations