Cremona's table of elliptic curves

Curve 20496v1

20496 = 24 · 3 · 7 · 61



Data for elliptic curve 20496v1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 61- Signs for the Atkin-Lehner involutions
Class 20496v Isogeny class
Conductor 20496 Conductor
∏ cp 88 Product of Tamagawa factors cp
deg 38016 Modular degree for the optimal curve
Δ -4337601601536 = -1 · 213 · 311 · 72 · 61 Discriminant
Eigenvalues 2- 3- -3 7+ -4  0 -7 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,4048,-13356] [a1,a2,a3,a4,a6]
Generators [10:168:1] [31:378:1] Generators of the group modulo torsion
j 1790515088207/1058984766 j-invariant
L 7.2657866122031 L(r)(E,1)/r!
Ω 0.45516591774777 Real period
R 0.18139705487046 Regulator
r 2 Rank of the group of rational points
S 0.99999999999997 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2562m1 81984bl1 61488be1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations