Cremona's table of elliptic curves

Curve 20532i1

20532 = 22 · 3 · 29 · 59



Data for elliptic curve 20532i1

Field Data Notes
Atkin-Lehner 2- 3- 29- 59+ Signs for the Atkin-Lehner involutions
Class 20532i Isogeny class
Conductor 20532 Conductor
∏ cp 66 Product of Tamagawa factors cp
deg 20592 Modular degree for the optimal curve
Δ -286125000048 = -1 · 24 · 311 · 29 · 592 Discriminant
Eigenvalues 2- 3- -2 -3 -3 -1 -5 -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,1626,5625] [a1,a2,a3,a4,a6]
Generators [-3:27:1] [14:177:1] Generators of the group modulo torsion
j 29696018978048/17882812503 j-invariant
L 7.3464108274149 L(r)(E,1)/r!
Ω 0.5976701254163 Real period
R 0.18623861261813 Regulator
r 2 Rank of the group of rational points
S 0.99999999999995 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 82128v1 61596f1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations