Cremona's table of elliptic curves

Curve 20640r1

20640 = 25 · 3 · 5 · 43



Data for elliptic curve 20640r1

Field Data Notes
Atkin-Lehner 2- 3+ 5- 43+ Signs for the Atkin-Lehner involutions
Class 20640r Isogeny class
Conductor 20640 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 6912 Modular degree for the optimal curve
Δ 129000000 = 26 · 3 · 56 · 43 Discriminant
Eigenvalues 2- 3+ 5- -4 -2  6  0  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-130,-128] [a1,a2,a3,a4,a6]
Generators [-6:20:1] Generators of the group modulo torsion
j 3825694144/2015625 j-invariant
L 3.9620711813398 L(r)(E,1)/r!
Ω 1.4988400385291 Real period
R 0.88114165610094 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20640l1 41280bi2 61920n1 103200bc1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations