Cremona's table of elliptic curves

Curve 20670a1

20670 = 2 · 3 · 5 · 13 · 53



Data for elliptic curve 20670a1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 13+ 53+ Signs for the Atkin-Lehner involutions
Class 20670a Isogeny class
Conductor 20670 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 53760 Modular degree for the optimal curve
Δ -30916869734400 = -1 · 214 · 3 · 52 · 132 · 533 Discriminant
Eigenvalues 2+ 3+ 5+  0  0 13+  0  0 Hecke eigenvalues for primes up to 20
Equation [1,1,0,6532,-171312] [a1,a2,a3,a4,a6]
Generators [141:1821:1] Generators of the group modulo torsion
j 30814728803051831/30916869734400 j-invariant
L 2.8480870860471 L(r)(E,1)/r!
Ω 0.3588135108914 Real period
R 3.9687567491141 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 62010cd1 103350cd1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations