Cremona's table of elliptic curves

Curve 20800m1

20800 = 26 · 52 · 13



Data for elliptic curve 20800m1

Field Data Notes
Atkin-Lehner 2+ 5+ 13+ Signs for the Atkin-Lehner involutions
Class 20800m Isogeny class
Conductor 20800 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 36864 Modular degree for the optimal curve
Δ 13520000000 = 210 · 57 · 132 Discriminant
Eigenvalues 2+  2 5+ -2 -4 13+ -2  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-28133,1825637] [a1,a2,a3,a4,a6]
Generators [277:3900:1] Generators of the group modulo torsion
j 153910165504/845 j-invariant
L 6.4329121493875 L(r)(E,1)/r!
Ω 1.1159166614433 Real period
R 1.4411721707487 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20800cp1 1300d1 4160h1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations