Cremona's table of elliptic curves

Curve 20976c1

20976 = 24 · 3 · 19 · 23



Data for elliptic curve 20976c1

Field Data Notes
Atkin-Lehner 2+ 3- 19- 23- Signs for the Atkin-Lehner involutions
Class 20976c Isogeny class
Conductor 20976 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 5120 Modular degree for the optimal curve
Δ -23157504 = -1 · 28 · 32 · 19 · 232 Discriminant
Eigenvalues 2+ 3- -1  1  3 -4 -7 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-401,-3237] [a1,a2,a3,a4,a6]
j -27925402624/90459 j-invariant
L 2.1328926910321 L(r)(E,1)/r!
Ω 0.53322317275803 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10488b1 83904y1 62928h1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations