Cremona's table of elliptic curves

Curve 21280l1

21280 = 25 · 5 · 7 · 19



Data for elliptic curve 21280l1

Field Data Notes
Atkin-Lehner 2+ 5- 7- 19+ Signs for the Atkin-Lehner involutions
Class 21280l Isogeny class
Conductor 21280 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 2432 Modular degree for the optimal curve
Δ -340480 = -1 · 29 · 5 · 7 · 19 Discriminant
Eigenvalues 2+ -2 5- 7-  5 -1  3 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,0,28] [a1,a2,a3,a4,a6]
Generators [3:8:1] Generators of the group modulo torsion
j -8/665 j-invariant
L 4.349716399607 L(r)(E,1)/r!
Ω 2.4218382382743 Real period
R 1.796039194883 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 21280w1 42560w1 106400bn1 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations