Cremona's table of elliptic curves

Curve 21450bl1

21450 = 2 · 3 · 52 · 11 · 13



Data for elliptic curve 21450bl1

Field Data Notes
Atkin-Lehner 2+ 3- 5- 11- 13- Signs for the Atkin-Lehner involutions
Class 21450bl Isogeny class
Conductor 21450 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 31680 Modular degree for the optimal curve
Δ -139425000000 = -1 · 26 · 3 · 58 · 11 · 132 Discriminant
Eigenvalues 2+ 3- 5-  3 11- 13- -1 -5 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-1326,-25952] [a1,a2,a3,a4,a6]
Generators [61:317:1] Generators of the group modulo torsion
j -659361145/356928 j-invariant
L 5.2289001159039 L(r)(E,1)/r!
Ω 0.38586121944591 Real period
R 3.3878113764662 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 64350fb1 21450bv1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations