Cremona's table of elliptic curves

Curve 2210d1

2210 = 2 · 5 · 13 · 17



Data for elliptic curve 2210d1

Field Data Notes
Atkin-Lehner 2- 5+ 13+ 17- Signs for the Atkin-Lehner involutions
Class 2210d Isogeny class
Conductor 2210 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 1024 Modular degree for the optimal curve
Δ 1231093760 = 216 · 5 · 13 · 172 Discriminant
Eigenvalues 2- -2 5+  0  2 13+ 17- -2 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-306,1156] [a1,a2,a3,a4,a6]
Generators [0:34:1] Generators of the group modulo torsion
j 3169397364769/1231093760 j-invariant
L 3.1550181405644 L(r)(E,1)/r!
Ω 1.3975591351775 Real period
R 0.28219003950803 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 17680h1 70720r1 19890n1 11050f1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations