Cremona's table of elliptic curves

Curve 23205j1

23205 = 3 · 5 · 7 · 13 · 17



Data for elliptic curve 23205j1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 13+ 17- Signs for the Atkin-Lehner involutions
Class 23205j Isogeny class
Conductor 23205 Conductor
∏ cp 14 Product of Tamagawa factors cp
deg 332640 Modular degree for the optimal curve
Δ -203007797323387875 = -1 · 37 · 53 · 76 · 135 · 17 Discriminant
Eigenvalues  2 3- 5+ 7+ -2 13+ 17-  6 Hecke eigenvalues for primes up to 20
Equation [0,1,1,53104,-21142165] [a1,a2,a3,a4,a6]
Generators [29690:1812065:8] Generators of the group modulo torsion
j 16561407340532658176/203007797323387875 j-invariant
L 11.256425680233 L(r)(E,1)/r!
Ω 0.1557638521737 Real period
R 5.1618549137722 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 69615r1 116025o1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations