Cremona's table of elliptic curves

Curve 23232br1

23232 = 26 · 3 · 112



Data for elliptic curve 23232br1

Field Data Notes
Atkin-Lehner 2+ 3- 11- Signs for the Atkin-Lehner involutions
Class 23232br Isogeny class
Conductor 23232 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 50688 Modular degree for the optimal curve
Δ -31608503156736 = -1 · 214 · 32 · 118 Discriminant
Eigenvalues 2+ 3-  1  2 11-  3 -7 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,1775,-268369] [a1,a2,a3,a4,a6]
Generators [1145:38784:1] Generators of the group modulo torsion
j 176/9 j-invariant
L 7.3561787091202 L(r)(E,1)/r!
Ω 0.31518854938402 Real period
R 5.834744570747 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 23232cw1 1452a1 69696bv1 23232bt1 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations