Cremona's table of elliptic curves

Curve 2325b3

2325 = 3 · 52 · 31



Data for elliptic curve 2325b3

Field Data Notes
Atkin-Lehner 3+ 5+ 31+ Signs for the Atkin-Lehner involutions
Class 2325b Isogeny class
Conductor 2325 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 24521484375 = 34 · 510 · 31 Discriminant
Eigenvalues  1 3+ 5+  4 -4 -2  6 -4 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-4250,104625] [a1,a2,a3,a4,a6]
Generators [40:5:1] Generators of the group modulo torsion
j 543538277281/1569375 j-invariant
L 3.4535518665139 L(r)(E,1)/r!
Ω 1.2003219919713 Real period
R 1.438593931301 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 37200di4 6975g3 465b3 113925ci4 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations