Cremona's table of elliptic curves

Curve 23655d1

23655 = 3 · 5 · 19 · 83



Data for elliptic curve 23655d1

Field Data Notes
Atkin-Lehner 3- 5- 19- 83- Signs for the Atkin-Lehner involutions
Class 23655d Isogeny class
Conductor 23655 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 3520 Modular degree for the optimal curve
Δ -9580275 = -1 · 35 · 52 · 19 · 83 Discriminant
Eigenvalues  0 3- 5-  1  0  2 -2 19- Hecke eigenvalues for primes up to 20
Equation [0,1,1,-95,356] [a1,a2,a3,a4,a6]
Generators [10:22:1] Generators of the group modulo torsion
j -95820414976/9580275 j-invariant
L 6.0777912357989 L(r)(E,1)/r!
Ω 2.2440328316635 Real period
R 0.27084234909761 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 70965e1 118275b1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations