Cremona's table of elliptic curves

Curve 23664k1

23664 = 24 · 3 · 17 · 29



Data for elliptic curve 23664k1

Field Data Notes
Atkin-Lehner 2- 3+ 17- 29+ Signs for the Atkin-Lehner involutions
Class 23664k Isogeny class
Conductor 23664 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 5760 Modular degree for the optimal curve
Δ 51753168 = 24 · 38 · 17 · 29 Discriminant
Eigenvalues 2- 3+  2 -2  0  6 17- -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-137,-468] [a1,a2,a3,a4,a6]
Generators [-13988:22580:2197] Generators of the group modulo torsion
j 17903239168/3234573 j-invariant
L 5.2167035221735 L(r)(E,1)/r!
Ω 1.4119483540076 Real period
R 7.3893687504455 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 5916c1 94656cf1 70992bb1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations