Cremona's table of elliptic curves

Curve 2415i1

2415 = 3 · 5 · 7 · 23



Data for elliptic curve 2415i1

Field Data Notes
Atkin-Lehner 3- 5- 7- 23- Signs for the Atkin-Lehner involutions
Class 2415i Isogeny class
Conductor 2415 Conductor
∏ cp 24 Product of Tamagawa factors cp
deg 768 Modular degree for the optimal curve
Δ 203765625 = 34 · 56 · 7 · 23 Discriminant
Eigenvalues -1 3- 5- 7- -2 -4 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-230,-1173] [a1,a2,a3,a4,a6]
Generators [-11:13:1] Generators of the group modulo torsion
j 1345938541921/203765625 j-invariant
L 2.5753280422991 L(r)(E,1)/r!
Ω 1.2383594321878 Real period
R 0.34660481377759 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 38640bt1 7245k1 12075b1 16905h1 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations