Cremona's table of elliptic curves

Curve 24225l1

24225 = 3 · 52 · 17 · 19



Data for elliptic curve 24225l1

Field Data Notes
Atkin-Lehner 3- 5+ 17- 19+ Signs for the Atkin-Lehner involutions
Class 24225l Isogeny class
Conductor 24225 Conductor
∏ cp 80 Product of Tamagawa factors cp
deg 4239360 Modular degree for the optimal curve
Δ 16217983803515625 = 34 · 58 · 175 · 192 Discriminant
Eigenvalues -1 3- 5+  2 -2 -6 17- 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,0,-1497505588,22304801430167] [a1,a2,a3,a4,a6]
Generators [22967:151079:1] Generators of the group modulo torsion
j 23768897678689118960520250489/1037950963425 j-invariant
L 3.8024860310522 L(r)(E,1)/r!
Ω 0.14550305338749 Real period
R 1.3066688095286 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 72675q1 4845a1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations