Cremona's table of elliptic curves

Curve 24310g4

24310 = 2 · 5 · 11 · 13 · 17



Data for elliptic curve 24310g4

Field Data Notes
Atkin-Lehner 2+ 5+ 11- 13+ 17- Signs for the Atkin-Lehner involutions
Class 24310g Isogeny class
Conductor 24310 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 12717441994400 = 25 · 52 · 114 · 13 · 174 Discriminant
Eigenvalues 2+  0 5+ -4 11- 13+ 17- -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-56195,-5110475] [a1,a2,a3,a4,a6]
Generators [-135:110:1] Generators of the group modulo torsion
j 19625516081291894409/12717441994400 j-invariant
L 2.257511131153 L(r)(E,1)/r!
Ω 0.31009278817169 Real period
R 0.91001436395188 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 121550bv4 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations