Cremona's table of elliptic curves

Curve 2448n6

2448 = 24 · 32 · 17



Data for elliptic curve 2448n6

Field Data Notes
Atkin-Lehner 2- 3- 17+ Signs for the Atkin-Lehner involutions
Class 2448n Isogeny class
Conductor 2448 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -374931001920724992 = -1 · 213 · 38 · 178 Discriminant
Eigenvalues 2- 3-  2  0 -4 -2 17+ -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-236739,-53231038] [a1,a2,a3,a4,a6]
Generators [1081:30888:1] Generators of the group modulo torsion
j -491411892194497/125563633938 j-invariant
L 3.4318421795526 L(r)(E,1)/r!
Ω 0.10678655624076 Real period
R 4.0171748911623 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 306c6 9792bq6 816h6 61200fh5 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations