Cremona's table of elliptic curves

Curve 24675d1

24675 = 3 · 52 · 7 · 47



Data for elliptic curve 24675d1

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 47+ Signs for the Atkin-Lehner involutions
Class 24675d Isogeny class
Conductor 24675 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 622080 Modular degree for the optimal curve
Δ -3780644318940234375 = -1 · 36 · 58 · 710 · 47 Discriminant
Eigenvalues -1 3+ 5+ 7- -2 -4  2  2 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-3780963,-2832895344] [a1,a2,a3,a4,a6]
j -382570056949462495849/241961236412175 j-invariant
L 0.54131801132325 L(r)(E,1)/r!
Ω 0.054131801132333 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 74025r1 4935c1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations