Cremona's table of elliptic curves

Curve 24768bc1

24768 = 26 · 32 · 43



Data for elliptic curve 24768bc1

Field Data Notes
Atkin-Lehner 2+ 3- 43- Signs for the Atkin-Lehner involutions
Class 24768bc Isogeny class
Conductor 24768 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 30720 Modular degree for the optimal curve
Δ 221870555136 = 218 · 39 · 43 Discriminant
Eigenvalues 2+ 3-  2  0  0  2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-14124,645680] [a1,a2,a3,a4,a6]
Generators [-92:1080:1] Generators of the group modulo torsion
j 1630532233/1161 j-invariant
L 6.6305089313344 L(r)(E,1)/r!
Ω 0.98661243854616 Real period
R 3.3602398836087 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 24768cc1 387d1 8256j1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations