Cremona's table of elliptic curves

Curve 25215c2

25215 = 3 · 5 · 412



Data for elliptic curve 25215c2

Field Data Notes
Atkin-Lehner 3+ 5- 41+ Signs for the Atkin-Lehner involutions
Class 25215c Isogeny class
Conductor 25215 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -74170576451025 = -1 · 316 · 52 · 413 Discriminant
Eigenvalues  1 3+ 5-  4  0 -4  4  0 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-137,-414414] [a1,a2,a3,a4,a6]
j -4173281/1076168025 j-invariant
L 2.2445183387885 L(r)(E,1)/r!
Ω 0.28056479234858 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 75645j2 126075v2 25215g2 Quadratic twists by: -3 5 41


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations