Cremona's table of elliptic curves

Curve 25215h6

25215 = 3 · 5 · 412



Data for elliptic curve 25215h6

Field Data Notes
Atkin-Lehner 3- 5- 41+ Signs for the Atkin-Lehner involutions
Class 25215h Isogeny class
Conductor 25215 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 779135848130025 = 38 · 52 · 416 Discriminant
Eigenvalues -1 3- 5-  0  4  2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-226970,-41617125] [a1,a2,a3,a4,a6]
Generators [54210:2326295:27] Generators of the group modulo torsion
j 272223782641/164025 j-invariant
L 4.7353436103177 L(r)(E,1)/r!
Ω 0.21873744603371 Real period
R 5.4121318688022 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 75645g6 126075c6 15a2 Quadratic twists by: -3 5 41


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations