Cremona's table of elliptic curves

Curve 25536v2

25536 = 26 · 3 · 7 · 19



Data for elliptic curve 25536v2

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 19- Signs for the Atkin-Lehner involutions
Class 25536v Isogeny class
Conductor 25536 Conductor
∏ cp 72 Product of Tamagawa factors cp
Δ -5.2659975554887E+24 Discriminant
Eigenvalues 2+ 3+ -4 7-  2 -2  8 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-49594105,-173940316199] [a1,a2,a3,a4,a6]
Generators [53187:12150880:1] Generators of the group modulo torsion
j -3293471763919519109730496/1285643934445484858643 j-invariant
L 3.493869318838 L(r)(E,1)/r!
Ω 0.027906097823194 Real period
R 6.9556070603761 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 25536bf2 12768bd1 76608cq2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations