Cremona's table of elliptic curves

Curve 25575c1

25575 = 3 · 52 · 11 · 31



Data for elliptic curve 25575c1

Field Data Notes
Atkin-Lehner 3+ 5+ 11+ 31- Signs for the Atkin-Lehner involutions
Class 25575c Isogeny class
Conductor 25575 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 23040 Modular degree for the optimal curve
Δ 7912265625 = 33 · 57 · 112 · 31 Discriminant
Eigenvalues -1 3+ 5+  2 11+ -2 -4  8 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-2088,-37344] [a1,a2,a3,a4,a6]
j 64432972729/506385 j-invariant
L 1.4131935926151 L(r)(E,1)/r!
Ω 0.70659679630757 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 76725w1 5115g1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations