Cremona's table of elliptic curves

Curve 26520n1

26520 = 23 · 3 · 5 · 13 · 17



Data for elliptic curve 26520n1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 13- 17+ Signs for the Atkin-Lehner involutions
Class 26520n Isogeny class
Conductor 26520 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 4096 Modular degree for the optimal curve
Δ 13525200 = 24 · 32 · 52 · 13 · 172 Discriminant
Eigenvalues 2- 3+ 5+  2  0 13- 17+  0 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-91,316] [a1,a2,a3,a4,a6]
Generators [1:15:1] Generators of the group modulo torsion
j 5266130944/845325 j-invariant
L 4.5803757550048 L(r)(E,1)/r!
Ω 2.1375083602846 Real period
R 0.53571436726391 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 53040v1 79560bc1 Quadratic twists by: -4 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations