Cremona's table of elliptic curves

Curve 26600d1

26600 = 23 · 52 · 7 · 19



Data for elliptic curve 26600d1

Field Data Notes
Atkin-Lehner 2+ 5+ 7+ 19- Signs for the Atkin-Lehner involutions
Class 26600d Isogeny class
Conductor 26600 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 59904 Modular degree for the optimal curve
Δ -1263500000000 = -1 · 28 · 59 · 7 · 192 Discriminant
Eigenvalues 2+ -3 5+ 7+ -1 -5 -5 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,2300,-33500] [a1,a2,a3,a4,a6]
Generators [30:250:1] [90:950:1] Generators of the group modulo torsion
j 336393216/315875 j-invariant
L 4.9216738893083 L(r)(E,1)/r!
Ω 0.47094396572519 Real period
R 0.32658303372471 Regulator
r 2 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 53200n1 5320f1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations