Cremona's table of elliptic curves

Curve 2775a1

2775 = 3 · 52 · 37



Data for elliptic curve 2775a1

Field Data Notes
Atkin-Lehner 3+ 5+ 37+ Signs for the Atkin-Lehner involutions
Class 2775a Isogeny class
Conductor 2775 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 10080 Modular degree for the optimal curve
Δ -1036932732421875 = -1 · 315 · 59 · 37 Discriminant
Eigenvalues  0 3+ 5+ -2  0  1 -6  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-60133,-5863332] [a1,a2,a3,a4,a6]
Generators [452:7687:1] Generators of the group modulo torsion
j -1539038632738816/66363694875 j-invariant
L 2.1718609487774 L(r)(E,1)/r!
Ω 0.1520535610697 Real period
R 3.5708814274034 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 44400cj1 8325r1 555b1 102675c1 Quadratic twists by: -4 -3 5 37


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations