Cremona's table of elliptic curves

Curve 28014m4

28014 = 2 · 3 · 7 · 23 · 29



Data for elliptic curve 28014m4

Field Data Notes
Atkin-Lehner 2- 3+ 7+ 23+ 29- Signs for the Atkin-Lehner involutions
Class 28014m Isogeny class
Conductor 28014 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 36922578163234092 = 22 · 324 · 72 · 23 · 29 Discriminant
Eigenvalues 2- 3+ -2 7+  0 -2 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,1,1,-708309,228965487] [a1,a2,a3,a4,a6]
Generators [14133:30802:27] Generators of the group modulo torsion
j 39299952982911088675537/36922578163234092 j-invariant
L 5.3193691764335 L(r)(E,1)/r!
Ω 0.36348851061116 Real period
R 7.3171077230057 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 84042r4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations