Cremona's table of elliptic curves

Curve 2838f2

2838 = 2 · 3 · 11 · 43



Data for elliptic curve 2838f2

Field Data Notes
Atkin-Lehner 2- 3- 11- 43- Signs for the Atkin-Lehner involutions
Class 2838f Isogeny class
Conductor 2838 Conductor
∏ cp 528 Product of Tamagawa factors cp
Δ -40417098467328 = -1 · 211 · 36 · 114 · 432 Discriminant
Eigenvalues 2- 3- -2 -2 11- -2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,7996,134160] [a1,a2,a3,a4,a6]
Generators [-8:268:1] Generators of the group modulo torsion
j 56537769879658943/40417098467328 j-invariant
L 4.8305275903402 L(r)(E,1)/r!
Ω 0.40964258170424 Real period
R 0.089333745127715 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 22704t2 90816e2 8514b2 70950f2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations