Cremona's table of elliptic curves

Curve 28600h1

28600 = 23 · 52 · 11 · 13



Data for elliptic curve 28600h1

Field Data Notes
Atkin-Lehner 2+ 5+ 11- 13- Signs for the Atkin-Lehner involutions
Class 28600h Isogeny class
Conductor 28600 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 12288 Modular degree for the optimal curve
Δ -2860000000 = -1 · 28 · 57 · 11 · 13 Discriminant
Eigenvalues 2+ -2 5+  2 11- 13- -3 -5 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-33,2563] [a1,a2,a3,a4,a6]
Generators [3:-50:1] Generators of the group modulo torsion
j -1024/715 j-invariant
L 3.7838137082589 L(r)(E,1)/r!
Ω 1.1570334727353 Real period
R 0.20439197511469 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 57200e1 5720f1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations