Cremona's table of elliptic curves

Curve 29040ch7

29040 = 24 · 3 · 5 · 112



Data for elliptic curve 29040ch7

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- Signs for the Atkin-Lehner involutions
Class 29040ch Isogeny class
Conductor 29040 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 587761422336000 = 215 · 34 · 53 · 116 Discriminant
Eigenvalues 2- 3+ 5+ -4 11- -2 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-10325696,-12767623680] [a1,a2,a3,a4,a6]
Generators [9170:814590:1] Generators of the group modulo torsion
j 16778985534208729/81000 j-invariant
L 2.5320675288512 L(r)(E,1)/r!
Ω 0.08422086888325 Real period
R 7.5161523575626 Regulator
r 1 Rank of the group of rational points
S 0.99999999999998 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3630w8 116160jn7 87120gk7 240b8 Quadratic twists by: -4 8 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations