Cremona's table of elliptic curves

Curve 29120cc3

29120 = 26 · 5 · 7 · 13



Data for elliptic curve 29120cc3

Field Data Notes
Atkin-Lehner 2- 5- 7+ 13+ Signs for the Atkin-Lehner involutions
Class 29120cc Isogeny class
Conductor 29120 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 3207461863424000 = 224 · 53 · 76 · 13 Discriminant
Eigenvalues 2- -2 5- 7+  0 13+  0  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-60705,5050975] [a1,a2,a3,a4,a6]
Generators [-25:2560:1] Generators of the group modulo torsion
j 94376601570889/12235496000 j-invariant
L 3.6151118332273 L(r)(E,1)/r!
Ω 0.43183021775176 Real period
R 1.3952674317423 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 29120x3 7280n3 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations