Cremona's table of elliptic curves

Curve 29624m1

29624 = 23 · 7 · 232



Data for elliptic curve 29624m1

Field Data Notes
Atkin-Lehner 2- 7+ 23- Signs for the Atkin-Lehner involutions
Class 29624m Isogeny class
Conductor 29624 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 123648 Modular degree for the optimal curve
Δ 3227665569341696 = 28 · 7 · 239 Discriminant
Eigenvalues 2- -2  2 7+  0 -2  2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-44612,2368960] [a1,a2,a3,a4,a6]
Generators [226:1970:1] Generators of the group modulo torsion
j 21296/7 j-invariant
L 3.9229988097277 L(r)(E,1)/r!
Ω 0.41305818914226 Real period
R 4.7487241662901 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 59248n1 29624o1 Quadratic twists by: -4 -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations