Cremona's table of elliptic curves

Curve 29637g1

29637 = 32 · 37 · 89



Data for elliptic curve 29637g1

Field Data Notes
Atkin-Lehner 3- 37+ 89- Signs for the Atkin-Lehner involutions
Class 29637g Isogeny class
Conductor 29637 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 66816 Modular degree for the optimal curve
Δ 2395798206597 = 312 · 373 · 89 Discriminant
Eigenvalues -2 3- -2  2  5 -1  0  1 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-11001,-437828] [a1,a2,a3,a4,a6]
Generators [-59:76:1] Generators of the group modulo torsion
j 201972703080448/3286417293 j-invariant
L 2.5482956265576 L(r)(E,1)/r!
Ω 0.46662709125993 Real period
R 2.7305483053685 Regulator
r 1 Rank of the group of rational points
S 0.99999999999999 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 9879a1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations