Cremona's table of elliptic curves

Curve 29670w4

29670 = 2 · 3 · 5 · 23 · 43



Data for elliptic curve 29670w4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 23- 43- Signs for the Atkin-Lehner involutions
Class 29670w Isogeny class
Conductor 29670 Conductor
∏ cp 72 Product of Tamagawa factors cp
Δ 1254000394845375000 = 23 · 3 · 56 · 232 · 436 Discriminant
Eigenvalues 2- 3- 5+  2  6 -4 -6 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-4762266,-4000113204] [a1,a2,a3,a4,a6]
Generators [-34242:8266:27] Generators of the group modulo torsion
j 11944409015055933947560609/1254000394845375000 j-invariant
L 10.623333281179 L(r)(E,1)/r!
Ω 0.10219952509052 Real period
R 5.7748329237834 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 89010u4 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations