Cremona's table of elliptic curves

Curve 30150cm1

30150 = 2 · 32 · 52 · 67



Data for elliptic curve 30150cm1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 67- Signs for the Atkin-Lehner involutions
Class 30150cm Isogeny class
Conductor 30150 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 49152 Modular degree for the optimal curve
Δ 82422562500 = 22 · 39 · 56 · 67 Discriminant
Eigenvalues 2- 3- 5+ -2  4  0  6  4 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-8330,-290203] [a1,a2,a3,a4,a6]
j 5611284433/7236 j-invariant
L 3.9982136223511 L(r)(E,1)/r!
Ω 0.49977670279374 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 10050l1 1206b1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations