Cremona's table of elliptic curves

Curve 30150cn1

30150 = 2 · 32 · 52 · 67



Data for elliptic curve 30150cn1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 67- Signs for the Atkin-Lehner involutions
Class 30150cn Isogeny class
Conductor 30150 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 4992 Modular degree for the optimal curve
Δ 7326450 = 2 · 37 · 52 · 67 Discriminant
Eigenvalues 2- 3- 5+ -2  4  3 -2 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-50,47] [a1,a2,a3,a4,a6]
j 744385/402 j-invariant
L 4.1074067767782 L(r)(E,1)/r!
Ω 2.0537033883887 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 10050m1 30150be1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations