Cremona's table of elliptic curves

Curve 30576cc1

30576 = 24 · 3 · 72 · 13



Data for elliptic curve 30576cc1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 13- Signs for the Atkin-Lehner involutions
Class 30576cc Isogeny class
Conductor 30576 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 110592 Modular degree for the optimal curve
Δ -17982067993344 = -1 · 28 · 38 · 77 · 13 Discriminant
Eigenvalues 2- 3+ -1 7-  6 13-  8  3 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-17901,-938223] [a1,a2,a3,a4,a6]
j -21064523776/597051 j-invariant
L 1.6482099433973 L(r)(E,1)/r!
Ω 0.20602624292513 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 7644j1 122304hc1 91728fi1 4368u1 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations